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This Letter presents a new approach to reducing the errors associated with the shape measurement of a rigid object
in motion by means of phase-shifting profilometry. While the work previously reported is only valid for the case of
two-dimensional (2-D) movement, the proposed method is effective for a situation in which the object moves in a
three-dimensional (3-D) space. First, a new model is proposed to describe the fringe patterns reflected from the
object, which is subject to 3-D movement. Then, an iterative least-squares algorithm is presented to estimate
the phase map. Experiments show that, in contrast to conventional phase-shifting profilometry, the proposed
method is capable of significantly reducing the error caused by the 3-D movement of the object. © 2014 Optical
Society of America
OCIS codes: (120.6650) Surface measurements, figure; (120.5050) Phase measurement; (100.2650) Fringe analysis.
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Phase-shifting profilometry (PSP) is one of the most
promising approaches for non-destructive 3-D shape
measurement. However, while multiple fringe patterns
are projected, the object must be kept static. Measure-
ment errors will occur if the object moves.
The above problem can be addressed from a number

of aspects. Zhang and Yau proposed a modified two-
plus-one phase-shifting algorithm to address the problem
by projecting two sinusoidal fringe patterns and a
uniform flat image [1]. As the height information is only
contained in the two sinusoidal fringe patterns, the error
due to motion is smaller than with traditional PSP. How-
ever, the error still occurs when the object moves during
the projections of the two sinusoidal fringe patterns.
Wang et al., proposed the use of a high-speed camera re-
cording 5000 frames per second to measure the moving
object [2]. The object can be considered as static during
the projection of the phase-shifted fringe patterns. How-
ever, use of such high-speed equipment implies a signifi-
cant increase in the cost of implementing the system.
Based on an analysis of the influence on the fringe pat-
terns caused by the movement, Lu et al. proposed a
method to reduce the error caused by the rigid object’s
movement [3]. However, the method presented in [3] is
only applicable in the case of 2-D movement of the ob-
ject, which is limited in terms of practical applications.
In this Letter, a new method is proposed to cope with

the errors caused by the 3-D movement of the object
in PSP. In particular, we consider the case that the
object has a rigid shape, and that the movement consists
of a translation in the direction of height and a 2-D move-
ment in the plane perpendicular to the direction
of height. The details are described below.
When the object is kept static and N -step PSP is used,

the fringe patterns acquired from the reference plane and
the object can be expressed as

�
sn�x; y� � a� b cos�ω�x; y� � 2πn∕N �
dn�x; y� � a� b cos�ω�x; y� �Φ�x; y� � 2πn∕N �; �1�

where n � 1; 2;…; N ; sn�x; y� and dn�x; y� are the n-th
fringe patterns on the reference plane and the object, re-
spectively, a is the background intensity resulting from
pattern offset and ambient light, and b is the amplitude
of the intensity of the sinusoidal fringe patterns. As we
are only considering the constant background intensity
and objects with diffuse surfaces, a and b can be seen
as constant, ω�x; y� is the phase value on the reference
plane, and Φ�x; y� is the phase difference between the
object and the reference plane. WhenΦ�x; y� is obtained,
the shape of the object can be calculated by:

h�x; y� � l0Φ�x; y�
Φ�x; y� − 2πf 0d0

; (2)

where h�x; y� is the height distribution of object, l0 is the
distance between the camera and the reference plane, f 0
is the spatial frequency of the fringe patterns, and d0 is
the distance between the camera and the projector.

Now let us consider the case where the object is sub-
ject to a 3-D movement and the height distribution
changes from h�x; y� to ~h�x; y�. Due to the rigid nature
of the subject’s shape, a point �x; y� on the object is
moved to �u; v� following the relationship below:
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where R, R̄, T, and T̄ are referred to as rotation matrixes
and translation vectors. As we are only considering the
case that the movement is the combination of a transla-
tion in the direction of height and a 2-D movement in the
plane perpendicular to the direction of height, we have:
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Because the movement in the direction of height is
exclusively a translation, we have:

~hx−y�u; v� � hx−y�x; y� � t̄3 � hx−y�f �u; v�; g�u; v�� � t̄3;

(5)

where x–y denotes the coordinate system in which the
functions are defined and

f �u; v� � r11u� r12v� t1; g�u; v� � r21u� r22v� t2:

(6)

Without loss of generality, �u; v� can be replaced by
�x; y�. Therefore, Eq. (5) yields the following:

~hx−y�x; y� � hx−y�f �x; y�; g�x; y�� � t̄3: (7)

We define the object fringe patterns after movement as

~dx−yn �x; y� � a� b cos�ω�x; y� � ~Φ�x; y� � 2πn∕N �; (8)

where ~Φ�x; y� is the phase difference at point �x; y� after
movement. Generally, l0 is much larger than the
measured object and the height variation t̄3. The phase
variations caused by t̄3 for each point of object are
approximately the same. Because of Eq. (7), we have

~Φ�x; y� � Φ�f �x; y�; g�x; y�� �Φ0; (9)

where Φ0 is the phase variation caused by t̄3. By inserting
Eq. (9) into Eq. (8), we get

~dx−yn �x; y� � a� b cosfω�x; y�
�Φ�f �x; y�; g�x; y�� �Φ0 � 2πn∕Ng: (10)

Note that in order to avoid the phase ambiguity Φ0 is lim-
ited to less than 2π, which requires the object movement
to be smaller than a single fringe. Now, let us consider
Eq. (10) in the new coordinate system ξ − η following
the relationship below:
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In ξ − η coordinate system, Eq. (10) becomes

~dξ−ηn �ξ; η� � ~dx−yn � f̄ �ξ; η�; ḡ�ξ; η��
� a� b cosfω� f̄ �ξ; η�; ḡ�ξ; η��
�Φ�ξ; η� �Φ0 � 2πn∕Ng; (12)

where

f̄ �u; v� � r̄11u� r̄12v� t̄1; ḡ�u; v� � r̄21u� r̄22v� t̄2:

(13)

By using �x; y� to replace �ξ; η� and extending Eq. (12) to
N -step PSP, we yield the following:

~dn�x; y� � ~dx−yn � f̄ n�x; y�; ḡn�x; y��
� a� b cosfω� f̄ n�x; y�; ḡn�x; y��
�Φ�x; y� �Φ0

n � 2πn∕Ng: (14)

Equation (14) describes the influence of the 3-D move-
ment on the fringe patterns. To simplify the expression,
Eq. (14) can be rewritten as follows:

~dn�x; y� � a� b cos�ω0
n�x; y� �Φ�x; y� � δn�; (15)

where ω0
n�x; y� � ω�f̄ n�x; y�; ḡn�x; y��. This can be ob-

tained by the fringe patterns of the reference plane and
Eq. (13), δn � Φ0

n � 2πn∕N is the phase shift amount
caused by the phase shift of PSP and height variations
t̄3 for each step, which is unknown in advance. In order
to obtain Φ�x; y�, we must estimate the value of δn. In-
spired by the methods presented in [4–6], which can ex-
tract the random phase shifts for other applications, we
propose to employ an iterative least-squares approach to
obtain δn and Φ�x; y�. The proposed method starts from
an initial value of δn � 2πn∕N and can be implemented
by taking the following steps.

Step 1: Estimate Φ�x; y� when an estimation of δn is
available (it takes the initial value for the first iteration).
To this end, we rewrite Eq. (15) as

~dn�x; y� � a� B�x; y� cos τ � C�x; y� sin τ; (16)

where B�x; y� � b cosΦ�x; y�, C�x; y� � −b sinΦ�x; y�,
and τ � ω0

n�x; y� � δn. Assuming that there are M
pixels in one fringe pattern, and when δn is known, there
are 2M� 1 unknowns and MN equations in Eq. (16).
When N ≥ 3, the unknowns can be obtained by the over-
determined least-squares method. We apply Eq. (14) to
the measured fringe patterns ~dx−yn to obtain dmn �x; y�;
then, the sum of the squared error in each pixel is

S�x; y� �
XN
n�1

� ~dn�x; y� − dmn �x; y��2: (17)

Based on Eq. (17), the least-squares criteria satisfy that
∂S�x; y�∕∂a � 0, ∂S�x; y�∕∂B�x; y� � 0, and ∂S�x; y�∕
∂C�x; y� � 0, and yields the following:

X�x; y� � A−1�x; y�B�x; y�; (18)

where
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(21)

From Eqs. (18)–(21), the unknowns a, B�x; y�, and
C�x; y� can be solved and Φ�x; y� can be determined:

Φ�x; y� � tan−1�−C�x; y�∕B�x; y��: (22)

Step 2: Estimate δn by the least-squares method using
Φ�x; y� estimated in Step 1. For this purpose, Eq. (15) can
also be rewritten as

~dn�x; y� � a� B0
n cos τ0 � C0

n sin τ0 ; (23)

where B0
n � b cos δn, C0

n � −b sin δn, and τ0 � ω0
n�x; y��

Φ�x; y�. The sum of the squares error in each frame is:

S0
n �

X
�x;y�

� ~dn�x; y� − dmn �x; y��2: (24)

The least-squares solution, which minimizes S0
n, is:
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Thus, the unknowns a, B0
n, and C0

n can be obtained by
Eqs. (25)–(28). Then, δn can be calculated by:

δn � tan−1�−C0
n∕B0

n�: (29)

The two steps described above are repeated in the way
that δn estimated from Step 2 is employed in Step 1 to

obtain a better estimation of Φ�x; y�, and Φ�x; y� ob-
tained in Step 1 is utilized in Step 2 to yield a better es-
timation of δn. The iterative process will stop when the
convergence condition is met:

j�δkn − δk1� − �δk−1n − δk−11 �j < ε: (30)

Then, Φ�x; y� will be taken as the correct phase distribu-
tion. In the above, k is the number of iterations and ε is the
accuracy requirement, e.g., 10−4. In the experiments pre-
sented below, we found that a very good convergence
can always be achieved, e.g., k is around 10when ε � 10−4.

Experiments have been carried out to verify the pro-
posed method, where the object is the mask shown in
Fig. 1(a) and the PSP is the traditional 3-step method.
The object was moved on a step-by-step basis in order to
emulate the instantaneous positions of the object when
the multiple image patterns are recorded. In practice, the
shutter of the camera must be fast enough to avoid
blurriness in the captured images. As the camera in our
laboratory is not fast enough, we kept the object static at
each step when the fringe patterns were recorded.

In order to obtain Φ�x; y� from Eq. (15), ω0
n�x; y�

should be available. To this end, we should obtain
�r̄11; r̄12; r̄21; r̄22; t̄1; t̄2� in Eq. (13). Three marks are
employed and placed on the object, as shown in Fig. 1(a).
The centers of the marks are extracted using the same
approach described in [3], which are used as the corre-
sponding points between multiple fringe patterns. As
Eqs. (3) and (4) show that t̄3 is independent of
�r̄11; r̄12; r̄21; r̄22; t̄1; t̄2�, the method described in [3] can
be employed to obtain �r̄11; r̄12; r̄21; r̄22; t̄1; t̄2�. The follow-
ing experiments have been conducted:

Experiment 1: We applied the traditional 3-step PSP to
the mask when the mask is kept static. The measurement
result is shown in Fig. 1(e), which matches our expect-
ations of the traditional 3-step PSP.

Experiment 2: Then, we moved the object in the direc-
tion of height for 3 mm and 4 mm in the second and third
step of PSP, respectively. The result of traditional PSP is
shown in Fig. 1(b); there are obvious errors. When the
proposed algorithm is applied to the case where the ob-
ject is moved by the same amount as above, a significant
improvement can be obtained, as shown in Fig. 1(f).

Experiment 3: Theobject is rotated clockwise in thex–y
plane for 0.0599 rad and moved in the direction of height
for 5 mm in the second step of PSP; then, the object is ro-
tated clockwise in thex–yplane for 0.0256 rad, andmoved
in the direction of height for 3 mm in the third step of PSP.
The result from the traditional PSP is shown in Fig. 1(c),
and shows significant errors. With the proposed algo-
rithm, the result is depicted in Fig. 1(g); it also shows
significant improvement.

Experiment 4: The object is moved 3 mm in the x-
direction, 5 mm in y-direction, 3 mm in the direction
of height, and rotated clockwise in the x–y plane for
0.0295 rad in the second step of PSP. In the third step
of PSP, the object is moved 2 mm in the x-direction,
4 mm in y-direction, 2 mm in the direction of height,
and rotated clockwise for 0.0277 rad in the x–y plane.
Figure 1(d) shows the result from traditional PSP and
significant errors occur. The result with the proposed

December 1, 2014 / Vol. 39, No. 23 / OPTICS LETTERS 6717



algorithm is shown in Fig. 1(h), again demonstrating
significant improvement.
In order to evaluate the performance of the proposed

algorithm, we also computed the root mean square
(RMS) errors of the height for all of the points on the ob-
ject surface, the iterative times, and the height offset for
the above experiments. The results are shown in Table 1.
As the exact shape of the mask is not available, the re-
constructed result for the static object in Fig. 1(e) is used
as the reference for our computation. Table 1 shows that
the proposed method has significant accuracy improve-
ment and fast convergence.
Figure 2 shows the comparison of the absolute errors

for the results shown in Figs. 1(d) and 1(h). It can be seen
that the absolute error in Fig. 2(b), using the proposed
method, is significantly smaller than the error of the
traditional PSP in Fig. 2(a).
We also studied how the amount of movement impacts

the RMS error; the result is shown in Fig. 3. In the second
and third steps of PSP, the object moves the same dis-
tance, and the movement distance in Fig. 3 is the sum
of the movement of the two steps. For each movement,
8 experiments are carried out. Figure 3 shows the mean
of the RMS errors. The error bars give the standard
deviation for the 8 experiments at each movement dis-
tance. It is seen that RMS error slightly increases with
the movement distance. This may be due to the influence
of the geometric structure of the system, as we only used
the ideal model for the system structure, the camera, and
the projector. It is expected that the error can be reduced
by accurately calibrating the system [7,8].
The computational cost associated with the proposed

method was also analyzed. The wrapped phase extrac-
tion in Eqs. (18)–(22) is most time consuming due to a
matrix inversion for each pixel of the fringe patterns.
However, parallel computing can be independently
implemented for each individual point. We employed
such an approach using Matlab on a Dell Vostro 470 com-
puter with 3.4 GHz CPU and 8 G memory, and it took 0.41

seconds to complete one iteration of Step 1 and Step 2 of
the proposed algorithm for the fringe pattern of 500 pix-
els by 500 pixels. It is expected that the time can be fur-
ther reduced if dedicated hardware is employed [9].

In summary, a new approach has been proposed to de-
termine the phase map of phase-shifted fringe patterns
reflected from a rigid object subject to a 3-D movement.
First, a new model is presented to describe the fringe pat-
terns influenced by the 3-D movement. Then, an iterative
least-squares method is proposed, which is able to esti-
mate the correct phase map without requiring the knowl-
edge of the height variations. The estimated phase map
can be used to reconstruct the 3-D shape with improved
accuracy performance in comparison to a conventional
PSP. Experimental results are also presented to verify
the effectiveness of the proposed method.
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Fig. 1. Comparison of the measurement results of traditional
PSP and the proposed method.

Table 1. Accuracy and Iterative Times (ε � 10−4)

Experiment
Number

RMS Errors
(Traditional
PSP) (mm)

RMS Errors
(Proposed

Method) (mm)
Iterative
Times

Height
Offset
(mm)

Experiment 2 10.385 0.071 9 0.002
Experiment 3 62.946 0.089 12 0.006
Experiment 4 57.174 0.083 14 0.004

Fig. 2. (a) and (b) The absolute error for Figs. 1(d) and 1(h).

Fig. 3. Relationship between the accuracy of the proposed
method and the movement distance in the direction of height.
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